Probabilités - Complémentaire

Probabilités conditionnelles

Exercice 1 : Calcul de probabilités conditionnelles à partir d'un tableau à double entrée

Soit le tableau d'effectifs suivant :
{"header_top": ["\\(A\\)", "\\(\\overline{A}\\)", "Total"], "header_left": ["\\(B\\)", "\\(\\overline{B}\\)", "Total"], "data": [["?", 25, 51], [26, "?", "?"], ["?", 38, "?"]]}
Calculer la probabilité \(P_{A} (B)\).
On donnera le résultat sous la forme d'une fraction.

Exercice 2 : Probabilité conditionnelle en situation concrète avec un tableau rempli, questions en langage mathématique

Dans un collège de 1000 élèves, on a constaté que :
  • - 56% font du judo
  • - 33% font du tennis et, parmi eux, 40% font aussi du judo
On note :
  • - S1 : l’événement « l'élève fait du tennis »
  • - S2 : l’événement « l'élève fait du judo »
On donnera les informations sous forme d'un tableau :
Pratique le tennisNe pratique pas le tennisTotal
Pratique le judo\(132\)\(428\)\(560\)
Ne pratique pas le judo\(198\)\(242\)\(440\)
Total\(330\)\(670\)\(1000\)

 
Indiquer la probabilité \(P_{}(S1) \).
Indiquer la probabilité \( P_{S1}(S2) \).
Indiquer la probabilité \( P(S1 \cap S2) \).
Indiquer la probabilité \( P(S1 \cup S2) \).
Indiquer la probabilité \( P(\overline{S1}) \).

Exercice 3 : Lecture d'énoncé - test médical

Un laboratoire de recherche met au point un test de dépistage d'une maladie chez une espèce animale et fournit les renseignements suivants : « la population testée comporte \(26\%\) d'animaux malades.
Si un animal est malade, le test est positif dans \(95\%\) des cas ; si un animal n'est pas malade, le test est négatif dans \(85\%\) des cas ».
On note \(M\) l'événement « l'animal est malade », et \(T\) l'événement « le test est positif ».
Déterminer \( P\left(M\right) \)
Déterminer \( P_M\left(T\right) \)
Déterminer \( P_\overline{M}\left(T\right) \)

Exercice 4 : Lecture d'arbre - déterminer P(T)

Un laboratoire de recherche met au point un test de dépistage d'une maladie chez une espèce animale. Le pourcentage d'animaux malades dans la population est connu.
On note \(M\) l'événement « l'animal est malade » et \(T\) l'événement « le test est positif ».

En se servant de l'arbre ci-dessous, déterminer \(P(T)\).
{"M": {"T": {"value": "0,93"}, "\\overline{T}": {"value": "0,07"}, "value": "0,24"}, "\\overline{M}": {"T": {"value": "0,16"}, "\\overline{T}": {"value": "0,84"}, "value": "0,76"}}

On arrondira le résultat à \(10^{-4}\).

Exercice 5 : Arbre de probabilités et interprétation d'énoncé (3 branches)

Un magasin de vêtements a constitué un stock d'un certain type de pantalons venant de trois fabricants \( f_1 \), \( f_2 \) et \( f_3 \).
Certains de ces pantalons présentent un défaut.
10% du stock provient du fabricant \( f_1 \), 25% du stock provient du fabricant \( f_2 \) et le reste du stock provient du fabricant \( f_3 \).
La qualité de la production n'est pas la même selon les fabricants.

Ainsi :
  • 2% des pantalons produits par le fabricant \( f_1 \) sont défectueux.
  • 1% des pantalons produits par le fabricant \( f_2 \) sont défectueux.
  • 5% des pantalons produits par le fabricant \( f_3 \) sont défectueux.
On prélève au hasard un pantalon dans le stock. On considère les événements suivants :
  • \( F_1 \) : « le pantalon a été fabriqué par \( f_1 \) » ;
  • \( F_2 \) : « le pantalon a été fabriqué par \( f_2 \) » ;
  • \( F_3 \) : « le pantalon a été fabriqué par \( f_3 \) » ;
  • \( D \) : « le pantalon est défectueux ».

Pour tout événement \( E \) , on note \( \overline{E} \) l’événement contraire de \( E \), \( p(E) \) la probabilité de \( E \) et, si \( F \) est un événement de probabilité non nulle, on note \( p_F(E) \) la probabilité conditionnelle de \( E \) sachant \( F \).

Donner \( p(F_2) \).
Calculer la probabilité, notée \( p(q2) \), que le pantalon choisi ne soit pas défectueux sachant qu'il a été fabriqué par \( f_2 \) ?
Compléter l’arbre de probabilités donné.
{"F_1": {"D": {"value": " "}, "\\overline{D}": {"value": " "}, "value": " "}, "F_2": {"D": {"value": " "}, "\\overline{D}": {"value": " "}, "value": " "}, "F_3": {"D": {"value": " "}, "\\overline{D}": {"value": " "}, "value": " "}}
Traduire mathématiquement l’événement « le pantalon choisi a été fabriqué par \( f_3 \) et n'est pas défectueux »
Calculer sa probabilité, notée \( p(événement) \).
False